MECHANISTIC STUDIES SUPPORTING THE EVALUATION OF PHARMACOKINETIC-DRUG INTERACTIONS WITH DRUGS APPROVED BY THE U.S. FOOD AND DRUG ADMINISTRATION **IN 2023: A SYSTEMATIC REVIEW OF NEW DRUG APPLICATIONS**

Jingjing Yu^{1,2}, Sophie Argon¹, Yan Wang¹, and Isabelle Ragueneau-Majlessi^{1,2} ¹Drug Interaction Solutions, ²Center of Excellence in Drug Interaction Science, Certara

Abstract

The mechanistic evaluation of enzyme- and transporter-based drug-drug interactions (DDIs) is an integral part of the drug development process and supports the safe and effective clinical use of new therapies. In the present work, DDI data for small molecular drugs approved by the U.S. Food and Drug Administration in 2023 (N = 38) were analyzed using Certara Drug Interaction Database (https://www.druginteractionsolutions.org/). The mechanism(s) and clinical magnitude of the observed interactions were characterized based on information available in the new drug application reviews. DDI data from dedicated clinical trials, pharmacogenetics studies, physiologically-based pharmacokinetics (PBPK) modeling and simulations, and population PK analyses were examined. Positive study results defined as mean area under the curve ratios (AUCRs) ≥ 1.25 for inhibition DDIs and ≤ 0.8 for induction DDIs, were then fully analyzed. When new drugs were evaluated as victims of enzyme-based DDIs, a total of 23 drugs (61%) were affected by perpetrator drugs (through inhibition and/or induction). Seven drugs were found to be sensitive substrates of CYP1A2 (fezolinetant), CYP2C8 (daprodustat), and CYP3A (elacestrant, gepirone, nirmatrelvir, nirogacestat, and repotrectinib), with AUCRs of 5.27-18.60 when co-administered with the strong marker inhibitors fluvoxamine, gemfibrozil, itraconazole, or ketoconazole. Four drugs, leniolisib, omaveloxolone, palovarotene, and sparsentan were found to be moderate sensitive substrates of CYP3A (AUCRs 2.12-4.12 with co-administration of itraconazole or ketoconazole). Regarding transporters, only three drugs, iptacopan (P-gp, BCRP, OATP1B1/1B3), momelotinib (OATP1B1/1B3), and zavegepant (OATP1B3, NTCP), were clinical substrates of transporters, with a maximum AUCR of 2.39 predicted for zavegepant using PBPK modeling and simulations following single-dose rifampin administration. As perpetrators, only one combination drug, nirmatrelvir and ritonavir, was considered a strong inhibitor of CYP3A (midazolam AUCR 14.30). No drug exhibited strong inhibition of transporters. The following four drugs were found to be moderate inhibitors (marker substrates AUCRs 2.07-2.73): momelotinib (BCRP), nirogacestat (CYP3A), pirtobrutinib (BCRP, CYP2C8), ritlecitinib (CYP1A2, CYP3A). No strong inducer of enzymes or transporters was identified. Four drugs showed enzyme induction, with repotrectinib showing the maximum induction and considered a moderate inducer of CYP3A (midazolam AUCR 0.31). As expected, almost all DDIs (except one) with AUCRs \geq 2 or \leq 0.5 (\geq 2-fold change) triggered dosing recommendations in the product labels. PBPK modeling and simulations continued to be increasingly used in lieu of clinical trials, with 12 drugs evaluated as victims of enzymes (N = 11) or transporter (N = 1), and 5 drugs as inhibitors of enzymes (N = 4) or transporters (N = 1). In line with the trend observed in recent years, oncology was the most represented therapeutic area, including 24% of all 2023 approvals. However, drugs found to be either sensitive substrates or strong inhibitors of enzymes included treatments for a variety of diseases, e.g., cancer treatments, antianemia preparations, anti-estrogens, antidepressants, and antivirals. This finding highlights the continuous challenge of effectively managing the risk of significant pharmacokinetic interactions in the clinic in patient populations who often receive numerous concomitant medications.

Objectives

- To review in vitro and pharmacokinetic-based clinical DDI data available in the NDA reviews for drugs approved by the FDA in 2023
- To understand main mechanisms that mediate interactions resulting in label recommendations

Methods

- Certara Drug Interaction Database (DIDB; www.druginteractionsolutions.org) was used to identify relevant DDI data. The mechanism(s) and clinical relevance of the interactions were characterized based on information available in the NDA reviews. DDI study results from dedicated DDI clinical trials, pharmacogenetic studies, as well as PBPK modeling and simulations that functioned as alternatives to dedicated clinical studies were examined.
- Applying the categorization recommended by the FDA, any drug interactions with AUC changes ≥ 5-fold (i.e., AUCRs ≥ 5 or ≤ 0.2), 2- to 5-fold (2 ≤ AUCR < 5 or 0.2 < AUCR ≤ 0.5), or 1.25- to 2-fold (1.25 \leq AUCR < 2 or 0.5 < AUCR \leq 0.8) were considered strong, moderate, or weak drug interactions, respectively.

Results

Enzyme-mediated DDIs

- Among the small new molecular entities (NMEs) approved (N = 38), 21 drugs were identified as clinical substrates based on DDI studies with inhibitors (Table 1):
 - 7 drugs were sensitive substrates (AUCRs = 5.27-18.60), including 5 for CYP3A, 1 for CYP1A2, and 1 for CYP2C8 (highlighted in red)
 - 4 drugs were moderate sensitive substrates (AUCRs = 2.12-4.12), all for CYP3A (highlighted in orange)
 - 1 drug was assessed using PBPK (probenecid model)
- 17 drugs were found sensitive to induction:
 - 16 drugs were sensitive to CYP3A induction, with AUCRs of 0.03-0.51 when coadministered with CYP3A inducers rifampin (N = 14), carbamazepine, or efavirenz - 1 drug was sensitive to CYP1A2 induction by cigarette smoking
 - 5 were assessed using PBPK (rifampin model)
- As inhibitors, 10 drug were confirmed to be clinical inhibitors of CYPs (**Table 2**):
- 1 drug was a strong CYP3A inhibitor (highlighted in red)
- 3 drugs showed moderate inhibition of CYP1A2, CYP2C8, and CYP3A (highlighted in orange)
- 3 drugs were assessed using PBPK models
- As inducers, 4 drugs showed weak-to-moderate induction (Table 3).

Transporter-mediated DDIs

- As substrate, 3 drugs were clinical substrates of transporters, with a maximum AUCR of 2.39 for zavegepant using PBPK following single-dose rifampin (Table 4).
- As perpetrator, no drug exhibited strong inhibition of transporters. 6 drugs were found to be clinical inhibitors, with maximum AUCRs of 2.40-2.73 (rosuvastatin) for 2 drugs, suggesting BCRP inhibition (Table 5).
- No transporter induction studies were conducted.

Label impact

- All DDIs with AUC changes ≥ 2-fold triggered dosing recommendations in the drug labels.
- Some DDIs with an AUC change < 2 also had label recommendations likely pertaining to concomitant use of drugs with a narrow therapeutic index.

Table 1. Enzyme-mediated inhibition DDIs, NMEs as substrates

NME	Therapeutic Class	Inhibitor	Enzyme	AUCR	Label Recommendation	
bexagliflozin	diabetes treatments	probenecid	UGT1A9	1.39	none	
capivasertib		itraconazole	CYP3A ¹	1.95	avoid strong CYP3A inhibitors	
	antineoplastic agents	probenecid	UGT2B7	1.36 ²	none	
daprodustat	antianemic preparations	gemfibrozil	CYP2C8	18.60	contraindicated with strong CYP2C8 inhibitors	
elacestrant	antineoplastic agents	itraconazole	СҮРЗА	5.27	avoid strong or moderate CYP3A inhibitors	
	immunosuppressants	fluconazole	СҮР2С9, СҮРЗА	1.84	not recommended with moderate to strong inhibitors of CYP2C9 and CYP3A	
etrasimod		gemfibrozil	CYP2C8	1.36	2020	
		itraconazole	СҮРЗА	1.32	none	
fezolinetant	other gynecologicals	fluvoxamine	CYP1A2	9.39	contraindicated with CYP1A2 inhibitors	
gepirone	nervous system	ketoconazole	СҮРЗА	6.05	contraindicated with strong CYP3A inhibitors	
iptacopan	immunosuppressants	clopidogrel	CYP2C8	1.36	not recommended with strong CYP2C8 inhibitors	
leniolisib	immunomodulators	itraconazole	CYP3A ¹	2.12	avoid strong CYP3A inhibitors	
nirmatrelvir	antivirals	ritonavir	СҮРЗА	8.31	none (combination drugs)	
nirogacestat	antineoplastic agents	itraconazole	CYP3A ¹	8.23	avoid strong CYP3A inhibitors	
omaveloxolone	nervous system	itraconazole	CYP3A ¹	4.12	avoid strong CYP3A inhibitors	
palovarotene	musculo-squeletal system agents	ketoconazole	СҮРЗА	3.11	avoid strong CYP3A inhibitors, grapefruit, pomelo, or juices containing these fruits	
pirtobrutinib	antineoplastic agents	itraconazole	CYP3A ¹	1.49	avoid strong CYP3A inhibitors or reduce pirtobrutinib dosage	
quizartinib	antineoplastic agents	ketoconazole	СҮРЗА	1.94	reduce dosage with strong CYP3A inhibitors	
repotrectinib	antineoplastic agents	itraconazole	CYP3A ¹	5.90	avoid strong or moderate CYP3A inhibitors	
sotagliflozin	cardiovascular system	mefenamic acid	UGT1A9	1.77	none	
sparsentan	other therapeutic products	itraconazole	CYP3A ¹	2.72	avoid strong CYP3A inhibitors	
vamorolone	corticosteroid	itraconazole	СҮРЗА	1.44	reduce dosage with strong CYP3A inhibitors	
zavegepant	migraine agents	itraconazole	CYP3A ¹	1.59	none	
zuranolone	nervous system	itraconazole	СҮРЗА	1.62	reduce dosage with strong CYP3A inhibitors	

¹ P-gp substrate *in vitro*² based on PBPK modeling and simulations

CERTARA

 CYP3A played a major role in the disposition of 18 out of 38 drugs (47%), with 5 of these being sensitive substrates.

CYP3A was also the most affected enzyme, with 6 drugs showing inhibition and 3 showing induction of CYP3A.

PBPK was used to evaluate enzymemediated DDIs, including 5 drugs evaluated as substrates and 4 as inhibitors.

Transporter-mediated DDIs mostly involved OATP1B (NMEs as substrates) and Pgp/BCRP (NMEs as inhibitors).

Want to learn more? << Scan Here

Table 2. Enzyme-mediated DDIs, NMEs as inhibitors

NME	Substrate	Enzyme	AUCR	Label Recommendation	
bexagliflozin	glimepiride	not identified	1.27	none	
	desipramine	CYP2D6	1.50 ¹	2020	
capivasertib	raltegravir	UGT1A1	1.72 ¹	lone	
	midazolam	СҮРЗА	1.77		
etrasimod	ethinylestradiol and levonorgestrel	not identified	1.24 (ethinylestradiol) 1.32 (levonorgestrel)	none	
leniolisib	ethinylestradiol	СҮРЗА	1.32	none	
nirmatrelvir and ritonavir	midazolam	СҮРЗА	14.30	contraindicated with drugs primarily metabolized by CYP3A and for which elevated concentrations are associated with serious and/or life- threatening reactions	
nirogacestat	midazolam	СҮРЗА	2.07 ¹	avoid CYP3A substrates where minimal concentration changes may lead to serious adverse reactions	
	repaglinide	CYP2C8	2.30	concomitant use of sensitive substrates of	
	omeprazole	CYP2C19	1.56	CYP2C8, CYP2C19, and CYP3A may increase the	
pirtobrutinib	midazolam	СҮРЗА	1.70	risk of adverse events related to these substrates for drugs which are sensitive to minimal concentration changes	
ritlecitinib ²	midazolam	СҮРЗА	2.69	additional monitoring and dose adjustment of	
	caffeine	CYP1A2	2.65	CYP3A and CYP1A2 substrate where small concentration changes may lead to serious adverse reactions	
sotagliflozin	ramipril	not identified	1.88	none	
trofinetide	midazolam	СҮРЗА	1.33 ¹	monitor for adverse reactions of orally CYP3A sensitive substrates for which minimal concentration may lead to serious toxicities	

¹ based on PBPK modeling and simulations; ² administered at a high dose of 200 mg once daily while the clinical dose is 50 mg once daily

Table 3. Enzyme-mediated DDIs, NMEs as Inducers

NME	Substrate	Enzyme	AUCR	Label Recommendation
omaveloxolone	midazolam	СҮРЗА	0.55	refer to the prescribing information of substrates of CYP3A and CYP2C8 for dosing instructions and monitor for lack of
	repaglinide	CYP2C8	0.65	efficacy of the concomitant treatment; avoid combined hormonal contraceptives, implants, and progestin-only pi
repotrectinib	midazolam	СҮРЗА	0.31	avoid CYP3A substrates where minimal concentration changes can cause reduced efficacy; if unavoidable, adjust the CYP3A substrate dosage according to the prescribing information; avoid hormonal contraceptives and advise female patients to use an effective nonhormonal contraceptive
sotagliflozin	midazolam	CYP3A	0.79	none
sparsentan	bupropion	СҮР2В6	0.67	monitor for efficacy of CYP2B6 substrates and consider dose adjustment in accordance with the prescribing information of these drugs

Table 4. Transporter-mediated DDIs, NMEs as substrates

	-			
NME	Inhibitor	Transporter	AUCR	Label Recommendation
iptacopan	cyclosporine	P-gp, BCRP, OATP1B1, OATP1B3	1.50	none
momelotinib	rifampin ¹	OATP1B1, OATP1B3	1.57	monitor for adverse reactions
zavegepant	rifampin ¹	OATP1B3, NTCP	2.39 ²	avoid inhibitors of OATP1B3 or NTCP

¹ single dose; ² based on PBPK modeling and simulations

Table 5. Transporter-mediated DDIs, NMEs as inhibitors

NME	Substrates	Transporter	AUCR	Label Recommendation
elacestrant	digoxin	P-gp	1.13	reduce the dosage of P-gp and BCRP substrates when
	rosuvastatin	BCRP	1.23	minimal concentration changes may lead to serious or life-threatening adverse reactions
momelotinib	rosuvastatin	BCRP	2.73	initiate rosuvastatin at 5 mg and do not increase to more than 10 mg once daily; dose adjustment with other BCRP substrates may also be needed as per their approved prescribing information
nirmatrelvir and ritonavir	dabigatran	P-gp	1.94	caution for digoxin with appropriate monitoring of serum digoxin levels; refer to the digoxin product label for further information
pirtobrutinib	digoxin	P-gp	1.35	concomitant use of P-gp or BCRP substrates may increase the risk of adverse events related to these substrates for drugs which are sensitive to minimal
	rosuvastatin	BCRP	2.40	concentration changes; follow recommendations for P- gp and BCRP substrates provided in their approved product labeling
ritlecitinib	sumatriptan	OCT1	1.50	none
sotagliflozin	digoxin	P-gp	1.31	monitor digoxin levels
sparsentan	pitavastatin	P-gp, BCRP, OATP1B1, OATP1B3, OATP2B1, and NTCP	0.70	avoid sensitive P-gp and BCRP substrates

📋 Scan me

Additional Results