Organ Impairment-Drug-Drug Interaction Database: A Tool for Evaluating the Impact of Renal or Hepatic Impairment and Pharmacologic Inhibition on the Systemic Exposure of Drugs

CPT Pharmacometrics Syst Pharmacol. 2015 Aug; 4(8); 489-94.
Published online 2015 Jul 14

Abstract

The organ impairment and drug-drug interaction (OI-DDI) database is the first rigorously assembled database of pharmacokinetic drug exposure data from publicly available renal and hepatic impairment studies presented together with the maximum change in drug exposure from drug interaction inhibition studies. The database was used to conduct a systematic comparison of the effect of renal/hepatic impairment and pharmacologic inhibition on drug exposure. Additional applications are feasible with the public availability of this database.

Drug Disposition and Drug-Drug Interaction Data in 2013 FDA New Drug Applications: A Systematic Review

Drug Metab Dispos. 2014 Dec; 42(12); 1991-2001.
Published online 2014 Sep 30

Abstract

The aim of the present work was to perform a systematic review of drug metabolism, transport, pharmacokinetics, and DDI data available in the NDAs approved by the FDA in 2013, using the University of Washington Drug Interaction Database, and to highlight significant findings. Among 27 NMEs approved, 22 (81%) were well characterized with regard to drug metabolism, transport, or organ impairment, in accordance with the FDA drug interaction guidance (2012) and were fully analyzed in this review. In vitro, a majority of the NMEs were found to be substrates or inhibitors/inducers of at least one drug metabolizing enzyme or transporter. However, in vivo, only half (n = 11) showed clinically relevant drug interactions, with most related to the NMEs as victim drugs and CYP3A being the most affected enzyme. As perpetrators, the overall effects for NMEs were much less pronounced, compared with when they served as victims. In addition, the pharmacokinetic evaluation in patients with hepatic or renal impairment provided useful information for further understanding of the drugs’ disposition.

Importance of multi-p450 Inhibition in Drug-Drug Interactions: Evaluation of Incidence, Inhibition Magnitude, and Prediction From in Vitro Data

Chem Res Toxicol. 2012 Nov 19;25(11; 2285-300. Published online 2013 Sep 27

Abstract

Drugs that are mainly cleared by a single enzyme are considered more sensitive to drug-drug interactions (DDIs) than drugs cleared by multiple pathways. However, whether this is true when a drug cleared by multiple pathways is coadministered with an inhibitor of multiple P450 enzymes (multi-P450 inhibition) is not known. Mathematically, simultaneous equipotent inhibition of two elimination pathways that each contribute half of the drug clearance is equal to equipotent inhibition of a single pathway that clears the drug. However, simultaneous strong or moderate inhibition of two pathways by a single inhibitor is perceived as an unlikely scenario. The aim of this study was (i) to identify P450 inhibitors currently in clinical use that can inhibit more than one clearance pathway of an object drug in vivo and (ii) to evaluate the magnitude and predictability of DDIs caused by these multi-P450 inhibitors. Multi-P450 inhibitors were identified using the Metabolism and Transport Drug Interaction Database. A total of 38 multi-P450 inhibitors, defined as inhibitors that increased the AUC or decreased the clearance of probes of two or more P450s, were identified. Seventeen (45%) multi-P450 inhibitors were strong inhibitors of at least one P450, and an additional 12 (32%) were moderate inhibitors of one or more P450s. Only one inhibitor (fluvoxamine) was a strong inhibitor of more than one enzyme. Fifteen of the multi-P450 inhibitors also inhibit drug transporters in vivo, but such data are lacking on many of the inhibitors. Inhibition of multiple P450 enzymes by a single inhibitor resulted in significant (>2-fold) clinical DDIs with drugs that are cleared by multiple pathways such as imipramine and diazepam, while strong P450 inhibitors resulted in only weak DDIs with these object drugs. The magnitude of the DDIs between multi-P450 inhibitors and diazepam, imipramine, and omeprazole could be predicted using in vitro data with similar accuracy as probe substrate studies with the same inhibitors. The results of this study suggest that inhibition of multiple clearance pathways in vivo is clinically relevant, and the risk of DDIs with object drugs may be best evaluated in studies using multi-P450 inhibitors.

A Useful Tool for Drug Interaction Evaluation: The University of Washington Metabolism and Transport Drug Interaction Database

Abstract

The Metabolism and Transport Drug Interaction Database (http://www.druginteractioninfo.org) is a web-based research and analysis tool developed in the Department of Pharmaceutics at the University of Washington. The database has the largest manually curated collection of data related to drug interactions in humans. The tool integrates information from the literature, public repositories, reference textbooks, guideline documents, product prescribing labels and clinical review sections of new drug approval (NDA) packages. The database’s easy-to-use web portal offers tools for visualisation, reporting and filtering of information. The database helps scientists to mine kinetics information for drug-metabolising enzymes and transporters, to assess the extent of in vivo drug interaction studies, as well as case reports for drugs, therapeutic proteins, food products and herbal derivatives. This review provides a brief description of the database organisation, its search functionalities and examples of use.